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Quantifying Time-Varying Multiunit Neural Activity
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Abstract—Modern microelectrode arrays make it possible to si-
multaneously record population neural activity. However, methods
to analyze multiunit activity (MUA), which reflects the aggregate
spiking activity of a population of neurons, have remained underde-
veloped in comparison to those used for studying single unit activity
(SUA). In scenarios where SUA is hard to record and maintain or is
not representative of brain’s response, MUA is informative in deci-
phering the brain’s complex time-varying response to stimuli or to
clinical insults. Here, we present two quantitative methods of anal-
ysis of the time-varying dynamics of MUA without spike detection.
These methods are based on the multiresolution discrete wavelet
transform (DWT) of an envelope of MUA (eMUA) followed by in-
formation theoretic measures: multiresolution entropy (MRE) and
the multiresolution Kullback–Leibler distance (MRKLD). We test
the proposed quantifiers on both simulated and experimental MUA
recorded from rodent cortex in an experimental model of global
hypoxic–ischemic brain injury. First, our results validate the use
of the eMUA as an alternative to detecting and analyzing transient
and complex spike activity. Second, the MRE and MRKLD are
shown to respond to dynamic changes due to the brain’s response
to global injury and to identify the transient changes in the MUA.

Index Terms—Brain injury, cardiac arrest (CA), discrete wavelet
transform (DWT), envelope, Kullback–Leibler distance (KLD),
multiresolution, multiunit activity (MUA), Shannon entropy.

I. INTRODUCTION

R ECENT advances in extracellular microelectrode technol-
ogy enable researchers to record action potentials (spikes)

simultaneously from a population of multiple neurons [1]–[5].
The large-scale recording of a population makes it easier to gain
a deeper understanding of how populations of neurons respond
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to natural or applied stimuli or insults to the brain. Study of
large populations of neurons can be accomplished through si-
multaneous recording from population of neurons, or multiunit
activity (MUA) or local field potential (LFP) [1], [2].

Conventional approach, however, has been to record and an-
alyze single unit activity (SUA) as a single neuron’s response in
an experiment [2]–[5]. The use of SUA is hampered, especially
when SUA is hard to separate or when if it turns out to be difficult
to record from the same neuron for sufficiently long periods [6],
[7]. In experiments where the brain’s response is transient or
time varying, such as when brain is injured, recording or ana-
lyzing SUA can be ineffective. Compared to SUA, MUA may be
a better measure of a population of neurons around the electrode
under such circumstances [1], [6], [8]. MUA may also be useful
for investigating the interaction among multiple neurons [2],
[6], [8], [9].

Here, we present novel quantitative methods to assess the
time-varying dynamics of MUA. We use a continuous represen-
tation of MUA by constructing an envelope of the MUA signal
(eMUA). Such an envelope reflects the changing dynamics of all
spike activities regardless of the magnitude of spike potentials
or the number of neurons. Amplitude envelope of population
activity bypasses the need for spike detection and isolation.
Moreover, eMUA is a nonstationary signal that has detailed and
coarse temporal features. For such signals, the wavelet trans-
form has proven itself as a way to deal with local changing
features in both time and frequency. Theory of multiresolution
discrete wavelet transform (DWT) has been developed to opti-
mally decompose complex time-varying signals into orthonor-
mal scales [10]. DWT has emerged as a very popular tool for
the analysis of complex physiological signals that invariably are
time varying and exhibit unique features at various frequencies
or scales [11]–[17]. Here, we use the multiresolution DWT to
decompose the eMUA signal into different scales. Next, to quan-
tify the embedded information content of the eMUA signal, we
calculate its entropy [18]. Two of the most popular measures
are the Shannon entropy and the relative entropy. Numerous
studies have used entropy [19]–[22] and relative entropy, re-
ferred to as Kullback–Leibler distance (KLD) [23], to measure
the discrepancy between two distributions [24], [25] of complex
physiological signals.

In our paper, two complementary methods of multiresolution
wavelet-based entropy of MUA are developed: the multiresolu-
tion entropy (MRE) and the multiresolution KLD (MRKLD).
The former provides the degree of uncertainty associated with
the time-varying eMUA, while the latter captures the local vari-
ation in the dynamics of eMUA by comparing the distributions
of the wavelet coefficients of successive eMUA windows.

0018-9294/$26.00 © 2010 IEEE
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Fig. 1. (a) Block diagram for extracting the eMUA. MUA signal is obtained
by bandpass filtering of a raw extracellular recording. Following full-wave rec-
tification and low-pass filtering are carried out to estimate the eMUA signal.
(b) Examples of MUA recordings and their corresponding eMUA. Arrows in-
dicate the occurrence of spike activities.

The remainder of the paper is organized as follows: In
Section II, the eMUA is first developed and next the
multiresolution-based entropy measures for eMUA are formu-
lated. Section III presents MUA simulations followed by anal-
ysis of cortical MUA obtained during experiments to study the
brain’s response to global hypoxic–ischemic injury as an exam-
ple. Section IV presents the conclusion.

II. MULTIRESOLUTION ENTROPIES FOR MUA

A. Envelope of MUA

High-pass filtering yields the high-frequency spike activity
of multiple neurons while filtering out the low-frequency LFPs.
In most studies using MUA, a spike-detection scheme is used
to discriminate spikes from the underlying noise. Using spike
detection, neural activity can be converted into a binary sequence
and subsequent firing rate can be estimated [6], [26], [27].

In contrast, we represent the filtered MUA as a continuous
waveform by obtaining an envelope of the underlying high-
frequency population activity, represented as a voltage. As
shown in Fig. 1(a), the filtered MUA is first full-wave rectified
(i.e., taking absolute values of the signal). Subsequent low-pass
filtering (cutoff < 500 Hz) is carried out [6], [9], [28]. Fi-
nally, the eMUA is obtained. Following Fig. 1(b) shows that the
eMUA captures distinctive spikes, including hard-to-separate
multiple-spike trains. The upper trace is the eMUA signal and
the lower one is the MUA signal. Arrows indicate the occur-
rences of spikes. Fig. 1(b)–(d) shows the filtered MUA and its
corresponding eMUA. Fig. 1(b) indicates the raw cortical MUA
recording from an anesthetized rat.

Fig. 2(a)–(d) shows the MUA, eMUA, spike sequences from
multiple neurons after spike detection from MUA, and the pri-
mary clustered SUA after spike sorting, respectively. While the
multiple neuron spike sequence in Fig. 2(c) treats distinct spikes
as a binary sequence (on/off), the eMUA signal in Fig. 2(b)

Fig. 2. (a) Bandpass-filtered MUA signal (300 Hz–3 kHz) with a sampling
frequency of 6.1 kHz. These signals were recorded from cortex of rat using mi-
croelectrodes (described in Section III-B). (b) eMUA for signal in (a). This was
obtained by full-wave rectification, low-pass filtering (cutoff frequency 150 Hz).
(c) Multiple neuron spike train recorded by single-channel microelectrode ob-
tained after spike detection. (d) Primary clustered SUA after spike sorting. The
resulting eMUA preserves the population response, i.e., neural spike activities
of multiple neurons, contained in the filtered MUA signal.

reflects the time-varying and transient spike information that
preserves the number and magnitude of all spikes. Moreover,
we can observe that SUA in Fig. 2(d) does not account for the
population response since it loses firing information from small
amplitude spike activity. On the other hand, the eMUA signal
provides an envelope of the time-varying neural response of all
neurons in the population.

B. DWT of eMUA

The eMUA is divided into a number of segments using a
sliding temporal window [29]. Let s(i) denote an eMUA signal.
For a given {s(i) : i = 1, . . . , N}, a sliding temporal window
w ≤ N and a sliding interval ∆ ≤ w are defined. Then, the nth
sliding window of the eMUA is represented as

sn (i) = {s(i) : i = 1 + n∆, . . . , w + n∆} (1)

where n = 0, 1, . . . , [(N − w + 1)/∆] and [x] denotes the in-
teger part of x.

Since eMUA is, in general, nonstationary and time-varying,
we use the multiresolution DWT for analysis due to its ability
to localize signal characteristics in both time and frequency do-
mains [15], [30]. In this way, both coarse changes occurring over
longer time scales as well as finer transitions occurring at shorter
time scales can be adequately represented. We incorporate DWT
to characterize the eMUA. The signal is decomposed over j lev-
els by the DWT. A set of wavelet coefficients, DWTj [sn (i)], is
obtained from the eMUA signal in a sliding window sn (i)

DWTj [sn (i)] = [c1 , c2 , . . . , cj+1] (2)

where ck for k = 1, 2, . . . , j + 1 are the sets of wavelet coeffi-
cients corresponding to the j-level DWT.

The next step involves estimating the probability distribu-
tion of the wavelet coefficients. We introduce the set {Im ,m =
1, . . . ,M} of disjoint intervals for each window DWTj [sn (i)]
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as follows:

DWTj [sn (i)] =
[
c1 , c2 , . . . , cj+1] =

⋃M

m=1
Im . (3)

Then, pn (m), is the probability that the wavelet coefficient
belongs to the interval Im within DWTj [sn (i)]. It is evaluated
as a ratio of number of the wavelet coefficients of DWTj [sn (i)]
within Im and the total number of the wavelet coefficients in
DWTj [sn (i)], i.e., pn (m) = nm /N , where nm is the number
of times of DWTj [sn (i)] found within mth interval and N is
the total number of wavelet coefficients in DWTj [sn (i)].

C. Entropy Measures of eMUA

The MRE of the time-varying eMUA is calculated as follows:

MRE(n) = −
M∑

m=1

pn (m) log pn (m) (4)

where 0 ≤ pn (m) ≤ 1 and
∑M

m=1 pn (m) = 1. The entropy of
the wavelet coefficients reflects the underlying uncertainty as-
sociated with the time-varying eMUA signal.

Further, we develop a second measure to detect changes in
the entropy of eMUA. Such a measure is useful as it can be
used to interpret changes in the complexity of the underlying
time-varying physiological process. Our approach is to charac-
terize the dissimilarity in dynamics of two consecutive eMUA
windows. Using the relative entropy measure [31]–[33], the
amount of discrepancy between the wavelet coefficients of con-
secutive sliding windows is measured. Taking the distribution
of wavelet coefficients of the previous window as a reference,
r(m), MRKLD of the signal of interest is obtained as

MRKLD(n) =
M∑

m=1

r(m) log
r(m)
pn (m)

=
M∑

m=1

pn−1(m) log
pn−1(m)
pn (m)

. (5)

The resultant MRKLD can detect the transition between two
successive windows, i.e., nth and (n–1)th windows of the eMUA
signal. The MLKLD is nonnegative, asymmetric, and zero if the
distributions match exactly. The greater the variation of the local
dynamics is between consecutive eMUA temporal windows, the
greater the MRKLD value. Block diagram describing MRE and
MRKLD is shown in Fig. 3.

The window size was chosen empirically, as discussed in
[29]. We calculated the MRE for a 5-s-long segment of the
actual cortical MUA [see Fig. 4(a)] for variable nonoverlapping
window sizes w. We started with w = 0.1 s and incremented
it steps of 0.1 s up to w = 5 s. The effects of window size are
demonstrated in Fig. 4(b). As can be seen in Fig. 4(a), MRE
approaches a steady-state value for window sizes >1 s. Thus,
w > 1 s provides an unbiased estimate of entropy.

III. RESULTS

We first examined the MRE and MRKLD of a simulated
eMUA signal synthesized from experimental recordings. Next,

Fig. 3. Block diagram of the proposed measures, i.e., MRE and MRKLD.

Fig. 4. Effect of window size on the MRE. (a) 4 s of actual baseline MUA was
chosen to evaluate the time-dependent MRE. (b) Resulting MRE plot versus
window size. The plots indicate that the selection of w > 1 s is appropriate for
avoiding a bias.

we applied these measures to the actual MUA recorded from
rodent cortex in experimental studies of neurological responses
to global hypoxic–ischemic injury and recovery after cardiac
arrest (CA) (the experimental details follow in Section III-B,
and were previously described in [34] and [35]).

A. Simulation Studies

To test the performance of the measures, i.e., MRE and
MRKLD, a synthetic MUA signal was used. The synthetic
MUA was modeled by combining three SUAs and background
noise. The sampling frequency for the simulated MUA was
10 kHz. Three spike templates for the three SUAs were obtained
from cortical single neurons of an anesthetized rat. Each spike
template was recorded from different neurons and the temporal
sequence of each spike template was designed by a integrate-
and-fire model with refractory period of 2 ms [36], [37]. To
mimic the signal conditions of the actual MUA signals, noise
with a Gaussian probability distribution was added. The SNR is
defined as the ratio between the absolute peak amplitude of the
spiking activity and the standard deviation of the noise [38]. In
the simulation, SNR was set to 5.

By combining the three SUAs, we obtained the simulated
MUA segment for 40 s. To simulate the time-varying MUA pat-
tern, the firing rates of three SUAs were varied every 10 s. To
imitate abrupt neural activity changes, the firing-rate parameter
was held constant for 10 s, then changed significantly for the
following time periods. During the initial 10 s period, the firing
rate of each SUA was 50 spikes/s. Between 10 and 20 s, the
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Fig. 5. Synthetic MUA and the time evolutions of MRE and MRKLD.
(a) Synthetic MUA is constructed by convolving three spike templates and
three spike train modeled a Poisson process, along with the addition of
Gaussian noise (SNR = 5). Each 10 s period has the distinct firing rate (period 1:
0–10 s, period 2: 10–20 s, period 3: 20–30 s, and period 4: 30–40 s). The upper
traces show the enlarged synthetic MUA of corresponding numbered periods.
(b) eMUA signal is obtained by a full-wave rectification, followed by low-
pass filtering at 150 Hz. (c) Time evolution of MRE for the simulated eMUA.
(d) Time evolution of MRKLD for the simulated eMUA. In calculating the
time-dependent entropy-based measures, the sliding-window length w = 1 s,
the sliding step ∆ = 1 s, and M = 20 were used. The arrows in (d) identify the
transition points in the varying dynamics of the synthetic MUA signal.

firing rate is 3 spikes/s. For the following 10 s, burst firing ac-
tivity of neurons was included to reflect similar experimental
recordings. During last 10 s, the firing rate of each SUA is set
to 50. Fig. 5(a) shows the resultant simulated MUA. Fig. 5(b)
depicts the eMUA signal obtained from the signal shown in
Fig. 5(a) by a full-wave rectification, followed by low-pass fil-
tering with 150 Hz cutoff frequency. Zero-phase forward and
reverse low-pass filtering was carried out using a second-order

Butterworth filter. Note that the eMUA signal not only retains
the high-frequency activity of a population of neurons, but also
includes small spike activities which might be ignored in typ-
ical spike detection. In calculating the MRE for the simulated
eMUA, the parameters were: sliding-window length w = 1 s,
sliding step ∆ = 1 s, M = 20. The Daubechies wavelet func-
tion [39] was used as the mother wavelet, as daughter wavelets
are orthogonal and suitable for representing nonstationary sig-
nals. The number of decomposition levels in DWT was set to
5, in accordance with the experimental sampling frequency and
to avoid the redundancy of using a greater number of levels.
Fig. 5(c) shows the time evolution of MRE of the simulated
eMUA. In Fig. 5(c), we can observe that MRE is indicative
of different firing rates. In addition, MRE reflects the variable
dynamics of the bursting activity during 20–30 s.

In Fig. 5(d), the time evolution of MRKLD of the simulated
eMUA is shown. At each transition of firing pattern, the cor-
responding MRKLD value was high, implying a high degree
of discrepancy between successive dynamics. For the bursting
activities during the 20–30 (s) period, MRKLD detected the tran-
sient changes of short-length bursting activities. Thus, MRKLD
is well suited for detecting the transient dynamics of underlying
MUA such as significant changes in the firing activity and oc-
currence of complex neural activity. Fig. 5(c) and (d) shows that
the MRE and MRKLD can identify state changes with respect
to the actual times of transition.

B. Experimental Studies on Cortical MUA Following
Hypoxic–Ischemic Brain Injury

Our work on MUA analysis is motivated by experiments that
use microelectrodes to record from injured brain. We investi-
gate the cortical multiunit spiking activity from rats subjected
to hypoxic–ischemic brain injury due to CA and subsequent
recovery after cardiopulmonary resuscitation (CPR). Our long-
term goal is to identify the neural response to injury, and this
response is assessed by recording and analyzing the MUA in
the cortex of the injured animal.

The brain injury studies were carried out under a protocol
approved by the Institutional Animal Care and Use Committee
of the Johns Hopkins Medical Institution. We have previously
reported on the asphyxic CA and resuscitation protocol [34],
[40]. This rat model has been validated to study multiple aspects
of brain injury after asphyxic CA including duration of injury
and temperature manipulation.

The experimental protocol is as follows. Five adult male
Wistar rats (300 ± 25 g) were used. The rats were anes-
thetized by 1% isoflurane in 50%:50% N2 :O2 . After anesthesia,
a stereotaxic frame (David Kopf Instruments, Tujunga, CA) was
used to place the silicon-based 16-channel microelectrode array
(Neuronexus Technologies, Ann Arbor, MI) into the pari-
etal cortex of the rats. The cortical MUA was continuously
recorded with 6.1 kHz sampling frequency (RX 5, Tucker-Davis
Technologies, Alachua, FL) and followed by a fourth-order
Butterworth bandpass filtering with forward–backward, zero-
phase lag with cutoff frequencies of 300–3000 Hz. EEG signal
was also recorded simultaneously.
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Baseline recording of 10 min was followed by a 5 min anes-
thetic washout to ensure no significant residual effect of isoflu-
rane on the physiological signals. After washout, CA was in-
duced via asphyxia by pharmacological paralysis and clamping
of the tracheal tube for 7 min. During the injury phase, CA was
defined by two parameters: the time to pulselessness (MAP <
10 mmHg) and the time to return of spontaneous circulation
(ROSC) during resuscitation (MAP > 50 mmHg). Resuscita-
tion was initiated by unclamping the endotracheal tube, restart-
ing mechanical ventilation with 100% oxygen, administering
epinephrine, sternal chest compressions (attempting to gener-
ate systolic arterial pressure peaks of >50 mmHg) until ROSC.
Further experimental details can be found in [35] and [40].

Fig. 6(a) demonstrates the actual MUA recording from corti-
cal population of a rat as well as the simultaneous EEG recording
during baseline, brain injury, and recovery. The recorded MUA
can be divided into three distinct phases. The first phase consists
of a 10-min baseline recording and a 5-min anesthesia washout
period, which is further characterized by spontaneous firing of
MUA. The second phase consists of 7 min duration of hypoxia
after CA. This phase was characterized by a significant reduc-
tion of MUA. Around 35–40 min, the spike activity gradually
increased, indicative of recovery of neural activity postinjury.
This pattern suggests that neural population activity is strongly
related to the status of recovery. We observed that the popula-
tion activity during the initial recovery phase had smaller spike
amplitudes and sparse firing. In addition, during the late recov-
ery phase, the MUA signal exhibited a characteristic busting
pattern.

The main aim in this experimental study was to quantify the
time-varying cortical MUA before, during, and after hypoxic–
ischemic brain injury. Previous studies have used EEG signals to
track the hypoxic–ischemic brain injury as a suitable marker for
neurological status early after the injury [13], [29]. This study
explored the role of underlying activity at the neuronal popula-
tion level. We calculate multiresolution entropies of the eMUA.
The parameters used in the calculation of the time-dependent
entropies were as follows: sliding-window length w = 5 s, slid-
ing step ∆ = 5 s, M = 20, and decomposition scale r = 5 in
DWT.

Fig. 6(b) and (c) shows the time courses of multiresolution
entropies, i.e., MRE and MRKLD, respectively. Fig. 6(b) depicts
the time evolution of MRE, normalized to its average value
over the baseline recording period. Compared with the baseline
period, we can observe the sudden decrease of MRE at the onset
of CA. Nearly 18 min into recovery, MRE gradually increased,
suggesting the reappearance of neural activity. MRE tends to
increase during the recovery duration. In Fig. 6(c), the time
evolution of MRKLD is shown. The MRKLD increased as the
brain recovers from the ischemic insult.

The MRE profiles during the recovery periods of five rats are
summarized in Table I. One channel out of 16-channel micro-
electrode array that has a highest baseline firing rate was chosen
per rat. Table I lists the averaged MRE for each rat during early
and late recovery periods. For 5-min-long segment in Table I,
we obtained the 60 samples of MRE. Based on the central limit
theorem, the MREs can be assumed to be normally distributed.

Fig. 6. Raw EEG and cortical MUA recordings of a rat before, during, and
after hypoxic–ischemic brain injury due to cardiac arrest and multiresolution
entropies (MRE and MRKLD) of eMUA. (a) Raw EEG (upper trace) and cortical
bandpass-filtered MUA (lower trace). The raw recordings consist of 10 min
baseline recording, 5 min washout, 7 min CA, and the subsequent recovery
period (BL: baseline, CA: cardiac arrest, RE: recovery). (b) Time course of
MRE for the cortical eMUA shown in (a). (c) Time course of MRKLD for the
cortical eMUA shown in (a). The four lower traces show the enlarged actual
MUA of abrupt increases in MRKLD compared to previous one.

Thus, the t-test, which assumes normality of the underlying dis-
tribution, was used in the analysis. Since, the recovery pattern
is being studied over time and we tested if there was a differ-
ence between successive time durations, we used a two-tailed
test. We can observe that MRE tends to increase as the recov-
ery progresses. For comparison, we carried out a nonparametric



2776 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 57, NO. 11, NOVEMBER 2010

TABLE I
STATISTICAL RESULTS OF MRE VALUE (MEAN ± SD) FOR DIFFERENT TIME

TABLE II
STATISTICAL RESULTS OF THE NONPARAMETRIC BOOTSTRAP TEST ON EMUA

bootstrap test using the median value of eMUA with a bootstrap
resample size of 500 shown in Table II. The analysis demon-
strated that the median value of eMUA does not always follow
the same trend as the MRE, especially during initial recovery
when dynamic changes to brain’s physiological state occur to
restore neural activity from a period of relative absence of elec-
trical activity. For example, in rats 3 and 5, while the MRE
is able to track the increasing trend of recovery between 25
and 40 min postinjury, eMUA does not reflect the same trend
adequately.

IV. CONCLUSION

We have presented an eMUA-based quantitative measure
that can capture time-varying dynamics of neural activity. The
eMUA signal used in this study is useful in analyzing popu-
lation responses to stimuli or brain dysfunction. Considering
the time-varying and nonstationary nature of eMUA, we used
multiresolution-based DWT to detect and localize the varying
temporal-spectral dynamics of the signal. It is well known that
information-theory-based metrics can provide more useful in-
sights about the information embedded in neurological signals
when compared to standard frequency analyses [16], [17], [29],
[34]. The combination of distribution of wavelet coefficients and
information theoretic measures are shown to be very effective
for describing both the spectral and temporal changes of the
eMUA. The resultant MRE is capable of exploring global quan-
tification of dynamics of the time-varying eMUA and MRKLD
serves to detect the local dynamic transitions in the MUA. To
our knowledge, this study is the first to explore a time-varying
MUA without the detection of spikes and to demonstrate its
application to a clinically important problem. Finally, the quan-
titative measures developed, MRE and MRKLD, were shown
to be useful in assessing the electrophysiological response of a
population of neurons under simulated and in vivo experimental
conditions.
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